Archive for the ‘Mobile’ Category

Application Cache is not gone, oh my! Or, is it?

Reports of Application Cache’s early demise are false. Application Cache (a.k.a Cache Manifest and AppCache) isn’t perfect, it can be very frustrating to get working and many people hate it with passion, but the fact is that the API will be around for the foreseeable future. I’ve been getting many questions, so this blog post is an attempt to shed some light on a confusing topic.

Mozilla says Application Cache is deprecated and unstable, WTF?

First, let’s review what Mozilla is saying about Application Cache since the majority of questions I get come from what they are saying. Mozilla has some fairly strong wording on their developer site, you can read all about it here. Or, if you don’t feel like following a link, here’s the official text from Mozilla Developer Network (MDN) website. I added the underlines to emphasize wording that’s tripping people up:

Deprecated. This feature has been removed from the Web standards. Though some browsers may still support it, it is in the process of being dropped. Do not use it in old or new projects. Pages or Web apps using it may break at any time.

Using the application caching feature described here is at this point highly discouraged; it’s in the process of being removed from the Web platform. Use Service Workers instead. In fact, as of Firefox 44, when AppCache is used to provide offline support for a page a warning message is now displayed in the console advising developers to use Service workers instead (bug 1204581).

Mozilla also references the Web Hypertext Application Technology Working Group’s (WHATWG) position on Application Cache. But, their wording is similar but definitely different in meaning from the WHATWG statement in their HTML Living Standard, Section 7.7. You may want to read this several times:

This feature is in the process of being removed from the Web platform. (This is a long process that takes many years.) Using any of the offline Web application features at this time is highly discouraged. Use service workers instead.

An oversimplified description of the WHATWG is it’s an organization that provides research and makes recommendations to the W3C – World Wide Web Consortium. It’s the W3C that finalizes recommendations and makes them into standards.

Also note: Application Cache is, for the moment, still officially part of the latest draft of the WHATWG HTML Living Standard document as shown here in Section 7.2.2 (it’s a big document, it’s best to just search for application cache).

 

What is the true state of Service Workers?

Reality is always nuanced when it comes to cross-browser web application development. Here’s a summary of facts for cross-browser developers to consider (as of February 1, 2016):

  • Service Workers are NOT supported on the following platforms, and you’ll need to use Application Cache if it suits your requirements and any Application Cache bugs don’t adversely affect your apps. You can verify these on caniuse.com.
    • Android Browsers at v4.4.4 and older (there are still a lot of phones out there using older browsers). Yes, a percentage of these users download Chrome. However, as of Feb 1, 2016, Android is reporting that v4.1.x thru v4.4 represents 60.8% of all phones in circulation.
    • Desktop Safari
    • iOS Safari
    • IE and Edge – don’t forget that a lot of offline field worker apps are built specifically for laptops.
  • The Service Worker specification is still a Working Draft according to the W3C. It’s not final according to the official standards bodies. Mozilla even lists Service Workers as “Experimental Technology”. You can view that yourself here. Here’s MDNs wording copied directly from their webpage:

This is an experimental technology 

Because this technology’s specification has not stabilized, check the compatibility table for the proper prefixes to use in various browsers. Also note that the syntax and behavior of an experimental technology is subject to change in future versions of browsers as the spec changes.

  • Service workers are more complex and require coding skills in comparison to Application Cache which requires only a configuration file and one line of HTML code. Here’s an example. It’s going to be a big step for long time Application Cache developers to wrap their heads around using Service Workers. It’s a very powerful API but it’s not going to be as easy as simply swapping out your Application Cache for offline capabilities built on Service Workers.

What to do, what to do?

My thoughts are MDNs statement leaves developers between a rock and a hard place, and holds the most water if the ONLY web browsers you need to support are browsers that have implemented all aspects of Service Workers that meet your requirements. You’ll also need to keep in mind that Service Workers are in beta so they can also can break or not work as expected, and there is a remote possibility the functionality could change.

When you combine MDN’s statement with the WHATWG statement and the WHATWG Living Standard document the picture becomes more clear. Here’s my interpretation: Application Cache is going to be around for a while longer. However, it would be a really good idea for you, as a cross-browser developer, to keep your eye on the progress of Service Workers and to consider using them in applications if/when it makes sense based on requirements and browser capabilities.

Don’t throw away an working/stable code built on Application Cache just yet.   If you are building apps on platforms that don’t support Service Workers then Application Cache may be your only viable alternative until you can upgrade to newer platforms or other browsers.

Additional References:

Tags: , , , , ,
Posted in Browsers, JavaScript, Mobile, Offline | Comments Off on Application Cache is not gone, oh my! Or, is it?

The W3C’s browser-based, JavaScript Geolocation API is excellent as a one-size-fits-all interface, but that approach comes at a price and it can cause some serious limitations when it comes to implementing more stringent professional, commercial and government use-cases.

Challenges with the default Geolocation API. One of the primary limitations is the Geolocation API does not tell you how it got a location. All locations are lumped together in a black box. Let me explain. On a smartphone or tablet, location data comes from one of three places: the GPS chipset, the cellular provider’s Location Service, or the browser’s Location Service. The W3C Geolocation API simply lumps these data points together. The end result is typically seen by the end user as significant and disturbingly wild jumps back and forth in the reported location, sometimes over large distances. A key to minimizing these fluctuations is to gain back control and understand which location provider created the latitude and longitude point.

Cordova-plugin-advanced-geolocation. The good news is that Android, in particular, has a very detailed API called LocationManager for examining geolocation data that comes from the device.  And, even better news for JavaScript developers is that the API, along with its access to all on-device GPS and Network location providers, has been exposed thru a Cordova plugin that is available here: https://github.com/Esri/cordova-plugin-advanced-geolocation.

What geolocation data is available? With this plugin you’ll be able to programmatically differentiate between the following geolocation data as well as get access to GPS satellites meta data:

  • Real-time GPS location – This is data from the on-board GPS or some devices will allow it to be the location data from an external GPS that is connected to the device via bluetooth.
  • Cached GPS location – Most devices cache the last-known GPS location and it’s persistent even when the device is restarted.
  • Real-time Network location triangulation – this is completely dependent on devices and cellular service providers. It may require WiFi to be turned on. It also may not be available in all countries or regions.
  • Cached Network location – Most devices cache the last-known network-based location and it’s persistent even when the device is restarted.

Use cases. With this plugin, you can now use your JavaScript skills to implement the following use cases and much more. For example, I’ve always wanted to play with the Satellite data to make a 3D map of the satellites using JavaScript. This plugin provides a huge advantage to developers building applications for capturing a single location such as field survey work as well as the following use cases and others that I haven’t thought of:

  • Determine a static outdoors location and only use GPS.
  • While indoors turn on only network location. Do not use GPS.
  • While in an urban area, use network location to get initial location before the GPS warms up and then turn off network location and only use GPS
  • Compare the differences between GPS and Network locations
  • …???

How does this plugin help minimize location fluctuations? This plugin comes with a configuration option for turning on a buffer. You can set the size of the buffer, each new geolocation from the device will be added to it, and then plugin will determine the geometric center based on all the locations in the buffer.

Are there any other advanced plugins? Yes, some Cordova plugins are focused on being activity based and will detect if you are walking, stopped, moving, etc. These plugins tend to work as apps that can be backgrounded. Feel free to browse the Cordova plug-in directory here.

Tags: , , , , , , ,
Posted in Android, GPS, JavaScript, Mobile, PhoneGap | 2 Comments »

Does using PhoneGap improve geolocation?

No, using PhoneGap or Cordova doesn’t change how you retrieve geolocation information from within a mobile application and it doesn’t improve accuracy. You still use the W3C HTML Geolocation API coding pattern.

The reason why is because PhoneGap runs the HTML/CSS/JS code in a native OS WebView. This is a chrome-less browser with mostly similar functionality as Chrome (Android) and Safari (iOS). There isn’t any additional functionality that would improve accuracy.

Some people have asked me if cordova-plugin-geolocation provides additional functionality. That plugin only works for devices that don’t already support geolocation and then it abides by the W3C Geolocation API spec.

The HTML Geolocation API in the browser also works offline. Yes, it’s true. You can use a web browser offline to get geolocation and even view a map without PhoneGap, here’s an example project that demonstrates the functionality in a number of ways. As long as the GPS on the device is enabled and working, and the user opt’s in at the geolocation-approval prompt then the application will receive GPS location data.

Are there any advantages to using PhoneGap for geolocation?

Yes, there are several potential advantages to using PhoneGap for geolocation. You can retrieve geolocation information while the device screen is locked and/or when the application is running in the background. You cannot do this with a typical web app. As soon as a browser is minimized a web app will stop running even if the GPS is still running.

Another advantage is you can write a PhoneGap plug-in to tap directly into the native OS location API. Taking this approach will give you a greater level of control over the information you are retrieving. And, you have coding tools and access to APIs to better manage the device’s battery life in a way that the HTML Geolocation API cannot deliver. In the case of Android you can tap into significantly greater information such as details on GPS satellites, granular information on device’s internet connection, as well as NMEA strings and more.

Tags: , , , , ,
Posted in GPS, HTML5, Mobile, PhoneGap | Comments Off on Does using PhoneGap improve geolocation?

Just because you wrapped an existing website in bootstrap doesn’t necessarily mean it’s ready for use on mobile devices. This is especially true if the website was originally designed for desktop browsers. Yes, bootstrap can significantly improve the user interface and make it flexible across multiple screen sizes. But it’s also up to you to roll up your sleeves and make sure the code behind the scenes is also worthy of being mobile-ready.

So, here are a three challenges to consider that will help keep your smartphone using visitors happy.

Challenge 1 – The internet connection on mobile devices is not as reliable as your home or office wired network. That’s a fact. Download speeds can and will vary significantly. The larger the website in MBs, the more links it has to download, the more non-optimized images then the longer it will take to render and become ready for use, especially on a mobile device. And mobile users are a very impatient bunch when it comes to sluggishness.

Size does matter with web sites. Smaller sized files download faster. The fewer number of files that make up a website also means faster downloads. Optimize, optimize and optimize some more. Minify files. Combine multiple files into one. Optimize images for web display.

Challenge 2 – Site navigation needs to be rethought and resized with mobile users in mind. Modern mobile devices use finger-based navigation, as opposed to high-precision mouse pointers. Teeny, tiny buttons or links that look cool on an ultra-high resolution MacBook retina screen positively suck when you are trying multiple times to click on them with your fingertip. On some websites using desktop navigational elements on your phone becomes like a macabre video game as you repeatedly play hit-or-miss with your fingertips.

Mobile websites should be finger lickin’ good. Okay, maybe you don’t really have to lick your fingers, but at least right size your navigational elements while keeping people’s fingers in mind. And fingers come in all shapes, sizes and levels of dexterity. Bootstrap can help with this.

Furthermore, your design and testing should work equally well in both portrait and landscape modes (phone right side up or phone on its side), and you should be able to switch back and forth seamless between the two modes in the same browser session.

Challenge 3 – Mobile devices are significantly more sensitive to browser memory leaks and bloated web pages. The mobile operating system will simply kill of any app that it deems to be using too much memory. And most of us are simply not good stewards at keeping our mobile browsers tuned up and happy. Browser caches grow huge and don’t get cleaned out regularly; we keep too many tabs open and probably have more information in our browser history than the library of congress. To further add to our woes, many of us let our phones run for weeks without a restart which can allow memory leakage to grow over time.

Tweak as many aspects of web page performance that your time will allow. Optimize old code by re-writing and striving to add new efficiencies. I know it may sound crazy, but if your site is particularly large and complex then consider creating focused, mobile-only sites that have scaled down content, rather than trying the one-size fits all approach. Smaller sites not only load faster but they are easier to navigate, take up less memory and typically perform better.

Tags: , , , ,
Posted in JavaScript, Mobile | Comments Off on You can’t just wrap old websites in bootstrap and call it a day

Tips for loading jQuery in mobile apps

Whether you are using jQuery by itself or with Bootstrap there are a few things to remember if you don’t want to see the following error: “Uncaught ReferenceError: $ is not defined”.  This error happens because you are trying to access jQuery before the library has finished loading. There are several ways to fix the error.

Encapsulate jQuery functionality inside a function. This keeps the parser from attempting to execute any jQuery until the function is explicitly called and it allows us to place the script tag at the bottom of the app. This approach can get tricky if jQuery is slow to load. It’s possible that the button can be visible and clickable before jQuery has finished loading. If this happens your app will throw an error. You can try it out in jsfiddle here.


<!DOCTYPE html>
<head lang="en">
    <title>jQuery Test</title>
</head>
<body>

<button id="button1">Click me</button>
<div id="div1" style="background:blue;height:100px;width:100px;position:absolute;"></div>
<script>

    // Test if jQuery is available
    if(typeof jQuery !== 'undefined'){
        console.log("jQuery has been loaded");
    }
    else{
        console.log("jQuery has not been loaded");
    }

    document.getElementById("button1").onclick = function(){
        $( "#div1" ).animate({
            left: "250px",
            height:'150px',
            width:'150px'
        });
    };

</script>
<!-- Everything above this will load first! -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js" ></script>
</body>
</html>

Use the script tag onload event to initialize jQuery functionality. This follows the guidelines of the first suggestion above and then waits to fire off any functionality until after the jQuery library has completed loading. This insures jQuery is loaded before it can be used. You can try it out in jsfiddle here.

<!DOCTYPE html>
<head lang="en">
    <title>jQuery Test</title>
</head>
<body>
<div id="div1" style="background:blue;height:100px;width:100px;position:absolute;"></div>
<script>

    // Test if jQuery is available
    if(typeof jQuery !== 'undefined'){
        console.log("jQuery has been loaded");
    }
    else{
        console.log("jQuery has not been loaded");
    }

    // Run this function as soon as jQuery loads
    function ready(){
        $( "#div1" ).animate({
            left: "250px",
            height:'150px',
            width:'150px'
        });
    }

</script>
<!-- Everything above this will load first! -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js" onload="ready()" ></script>
</body>
</html>

Place script tag in head. Sometimes lifecycle issues in mobile web apps will require us to simply load jQuery from the head of the web app. Because this forces jQuery to load synchronously before any user interface elements we pretty much guarantee that jQuery will be available when we run JavaScript within the body of the application. Try it out in jsfiddle here.


<!DOCTYPE html>
<html>
<head lang="en">
    <meta charset="UTF-8">
    <title>jQuery Test</title>
    <!-- Block DOM loading until jQuery is loaded -->
    <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
</head>
<body>
    <button id="button1">Click me</button>
    <script>

        // Test if jQuery is available
        if(typeof jQuery !== 'undefined'){
            console.log("jQuery has been loaded");
        }
        else{
            console.log("jQuery has not been loaded");
        }

        // Page is fully loaded including any graphics
        $(window).load(function() {
            console.log("window.load worked!");
        });

        // According to jQuery docs this is equivalent
        // to the generic anonymous function below
        $(document).ready(function() {
            console.log("document.ready worked!");
        });

        // The DOM has been loaded and can be accessed
        $(function() {
            console.log("DOM loaded worked!");
        });

        $( "#button1" ).click(function() {
            alert( "Handler for .click() called." );
        });

    </script>
</body>
</html>

Tags: , , ,
Posted in JavaScript, Mobile | Comments Off on Tips for loading jQuery in mobile apps

In Part 1 we looked at the differences between partial and fully offline use cases. Part 2 provides an overview of the HTML5 Interfaces and JavaScript APIs that make it possible to go offline with web applications. Going offline involves working with multiple pieces and coding for specific patterns. I’ve tried my best to stick to technology that is widely available across the largest variety of browsers.

Offline dependencies

Offline web applications are dependent on three things.  It doesn’t matter if your application is partially or fully offline, you’ll still need to address these in your code.

  • Caching HTML, CSS and JavaScript
  • Data Storage
  • Offline/Online detection

Caching

Application Cache. The Application Cache, or AppCache, interface lets you specify and store HTML and CSS files as well as JavaScript libraries so that they are available from the browser’s native cache. Once an item is in the cache the browser will use it regardless of whether it’s online or offline. It’s almost like you never went offline!

The AppCache is an essential part of your application strategy for allowing offline browser reloads or restarts. Without this an application will simply fail to re-load while offline.

Data Storage

Browsers have a variety built-in JavaScript APIs for storing data. The data can be for maintaining the applications state such as for storing bookmarks and form data. Or, it can be used for storing information such as maps, address and phone lists, TO-DOs or points of interest for a vacation.

LocalStorage. The LocalStorage API is super-easy to use. It stores Strings in simple key/value pairs. It’s limited to about 5MBs on most browsers. The two main challenges you’ll run into with LocalStorage are hitting the storage limit and performance hits when serializing and deserializing data.

IndexedDB. IndexedDB is essentially an asynchronous noSQL database that lets you store a wide variety of datatypes so that you don’t have to deal with serialization/deserialization.  Datatypes include String, Object, Array, Blob, ArrayBuffer, Uint8Array and File. While many online sources will tell you that there isn’t a size limit, I’ll tell you that in general you should limit your storage on a mobile device around 50 – 100MBs to help prevent the browser from crashing.

WebSql. It’s widely recommended that you not build applications directly on WebSql. The World Wide Web Consortium (W3C) is letting this standard die off in favor of IndexedDB and LocalStorage. I’m really only including this here for reasons such as Safari 7 and and the Android native browsers before 4.4 only support WebSql. For more information on how to get around this read down to the section on IndexedDBShim.

3rd Party Browser Storage

If the built-in browser storage capabilities aren’t meeting your needs you still have other options.

IndexedDBShim. IndexedDBshim is a Polyfill for WebSQL-based browsers. Because IndexedDB isn’t natively supported on older versions Safari 7 and Opera you can use this 3rd party shim to transparently translate your IndexedDB code to work across Android and iOS.

PouchDB. PouchDB is an Open Source experimental library that is an attempt to smooth some of IndexedDB’s rough edges as well as provide additional functionality, such as the ability to sync with remote stores.

LocalForage (Mozilla).  LocalForage is also an attempt to bridge the gap between LocalStorage and IndexedDB. It gives you an interface that provides much wider browser coverage than IndexedDB by itself.  One of the downsides is the amount of storage you can use. If a user is on an older browser such as IE8 that’s limited to LocalStorage then that user will be limited to storing about 5MBs of data. If you requirements call for using more than that, such as downloading large address lists, then the app won’t work on that browser or you’ll have to build in some sort of paging mechanism that deletes the old data and brings in the new.

Offline/Online Detection

There are a number of ways to detect if the browser is online or offline as well as when the internet status changes.

NavigatorOnline.online.  Some browsers have a built-in detection mechanism. However, it is not always reliable and false positives are a distinct possibility. For that reason, you will have to build additional detection capabilities or lean towards a 3rd party library.

Offline.js. Offline.js is a small Open Source library (~3KB) that detects when you lose an internet connection and when it comes back up. While not perfect, it does handle a lot of cross-browser compatibility issues for you. And, if you find bugs you can always create a fix and submit pull requests.

References

Caniseuse – IndexedDB

Caniuse – LocalStorage

Caniuse – WebSQL

Let’s Take This Offline

Tags: , , , , , , ,
Posted in Browsers, JavaScript, Mobile | Comments Off on Offline JavaScript Part 2 – Overview of Interfaces and APIs